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Morphological ordering in biopolymers: Informational statistical thermodynamic approach
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We consider the question of the emergence of morphological ordering in an open far-from-equilibrium
model of a biopolymer. We apply informational statistical thermodynamics, which was shown to be appropriate
to deal with dissipative systems displaying complex behavior. The formation of nonlinear spatial ordering
consisting in the emergence of static charge-density waves, producing a bioelectret-type state, is evidenced.
This kind of behavior may arise in biopolymers under the influence of biochemical processes.
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I. INTRODUCTION

In the field of systems with complex behavior~complex
systemsfor short! @1–3#, the study of self-organization with
emergence ofdissipative structureshas deserved special in
terest @4–7#. We address here the possibility of the em
gence of morphological ordering in quasilinear systems, e
biopolymers, when driven far from equilibrium. It is show
that the interplay of collective behavior~plasma waves!
coupled to dissipative processes can lead to the emergen
such spatial ordering.

We deal with this question on the basis of the so-cal
thermodynamics of complexity@8#, which is the application
of informational-statistical thermodynamics~IST! @9–13# to
the study of complex systems. The present developmen
IST is based on a nonequilibrium ensemble formalis
which is a far-reaching generalization of Gibbs and Bol
mann approaches, labeled the nonequilibrium statistical
erator method@14–17#. Its formulation is based on a varia
tional principle, namely, the principle of maximization of th
informational entropy@18#, and then referred to as MaxEn
NESOM for short.

A by-product of MaxEnt-NESOM is a generalized nonli
ear quantum kinetic theory@14,19,20#. It provides the equa-
tions of evolution for the basic variables describing the ir
versible change in time of the macroscopic state of
nonequilibrium system. The connection with complexity
given by the nonlinear terms that are known to be neces
for complex behavior to arise.

Recent theoretical studies have suggested the possib
of the emergence of a morphological transition in carr
systems in bulk matter when under the action of an exte
source of energy@21#. Later work @22# has confirmed this
result in the case of polar semiconductors continuously i
minated with ultraviolet radiation. It was shown that the o
dered states consist of the formation of stationary cha
density waves. However, it was pointed out that t
observation of this phenomenon under accessible experim
tal conditions could be unfeasible because of the intens
lumination required. In effect, because of the poor efficien
of the absorption of light, high pumping intensities are ne
essary to overcome dissipative effects and provide for pat
formation, which could produce damage in the sample.
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In the same paper@22# the possibility was conjectured tha
the situation may improve in the case of systems with l
dimensionality~like semiconductor quantum wires!. In par-
ticular, it is expected that such phenomenon may foll
more easily in the case of biopolymers, e.g., thea-helix sec-
ondary structure in protein and peptides, DNA chains, e
@23#, as well as in doped organic polymers, like vinyls, a
etanilide, etc.@24,25#. We note that biopolymers behave a
semiconductorlike materials of thep-doped type@26#, and
admit efficient mechanisms of excitation via biochemic
processes~see, for example,@27#!. This is an interesting
point as it was proposed that mobile electrons can have
important effect in biological systems@28#.

We consider here a problem of this kind, namely, ele
tronic carriers in quasi-one-dimensionalp-type conducting
materials, in particular a wirelike biopolymer. We show ho
morphological patterns in the carrier system can emerge
long-lived spatially organized charges, that is, a kind of b
electret state@29#. We present a characterization of the ins
bility and an analysis of the spatial organization of the carr
system.

II. INSTABILITY OF THE HOMOGENEOUS STATE

We consider a quasi-one-dimensional system of ap-doped
type, consisting of a periodic lattice with lattice parametera.
Let nh be the density of holes~carriers in the valence o
bonding band!, andne the density of electrons~carriers in the
conduction or antibonding band!. The densityne is a result
of thermal excitation or other processes of excitation, and
nh be much larger thanne . Moreover, the concentrationnh is
considered to be high enough for the carrier system to be
the metallic side of Mott transition@30# ~this is the case in
proteins, where the density is of the order of 1018 cm23

@26#!, i.e., impurity states and excitons are totally ioniz
with holes and electrons acting as mobile carriers. Furth
more, these carriers are driven away from equilibrium by
external pumping source~e.g., electromagnetic radiation o
biochemical excitation@27# in the case of biosystems!.

The system Hamiltonian is taken as

Ĥ5Ĥ01Ĥ81Ĥ f , ~1!
©2002 The American Physical Society14-1
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where

Ĥ05Ĥc1ĤL , ~2!

with

Ĥc5(
k

@ek
hh2k

† h2k1ek
eck

†ck#, ~3!

which is the Hamiltonian of the mobile carriers, withck(ck
†)

and hk(hk
†) being annihilation~creation! operators of elec-

trons and holes in statesk ~in antibonding or bonding bands
respectively!, ek

e andek
h are the corresponding energy dispe

sion relations, and

ĤL5(
qg

\vgqS bgq
† bgq1

1

2D ~4!

is the Hamiltonian associated with the lattice vibrations, w
b(b†) being annihilation~creation! operators of phonons in
modeq of branchg; k andq run over the Brillouin zone. The
interaction Hamiltonian between carriers and lattice is giv
by

Ĥ85 (
kqg l

@Vgq
l ~h!h2k1q

† h2k1Vgq
l ~e!ck1q

† ck#~bgq2bg2q
† !,

~5!

whereVgq
l are the matrix elements of the interaction anl

indicates the type of interaction: deformation potential in
cases, plus Fro¨hlich interaction with longitudinal optical vi-
brations, and piezoelectric potential with acoustic vibrat
@31#. Finally, the Hamiltonian of the interaction of the carr
ers with the external source is given by

Ĥ f5(
kk

@lk
~h!wkh2k1k

† h2k1lk
~e!wkck1k

† ck#1H.c., ~6!

where thew are annihilation operators of elementary exci
tions in the source~which ‘‘feeds’’ the system with energy
and momentum!, l is the coupling strength, andk is the
quasimomentum—or crystalline momentum—transferred
the process. We keep the vector notation fork, q, etc., since
both directions of propagation along the length of the sys
are possible.

According to MaxEnt-NESOM we next need to spec
the basic set of variables for the description of the noneq
librium macroscopic state of the system characterized by
Hamiltonian of Eq.~1!. This is done in terms of the energ
Ec(t), the concentrationsne andnh ~these densities are con
stant once they are fixed by doping and thermal excita
@32,33#! @34,35#, and the quantities

nkQ
e ~ t!5Tr$n̂kQ

e %~ t !%, nkQ
h ~ t !5Tr$n̂kQ

h %~ t !%, ~7!

where

n̂kQ
e ~ t !5ck11/2Q

† ck21/2Q , n̂kQ
h ~ t !5h2k21/2Qh2k11/2Q

† .

~8!
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In Eqs. ~7!, %(t) is the corresponding MaxEnt-NESOM
nonequilibrium statistical operator, which is expressed
terms of the basic set of dynamical variables@14–17#.

Concerning the lattice subsystem, we would need to
troduce the populations of the phonons in the differe
branches and modes. However, since we are interested i
steady state and not in ultrafast transients, we can take
phonon modes as thermalized with an external reservo
temperatureT0 , and, then, the lattice has a constant ene
EL . Therefore, the phonons are described by a canon
distribution with populations given by the Planck-like form

ngq5@exp$\vgq /kBT0%21#21. ~9!

We stress here that the quantities of Eqs.~7! are necessary
to describe the spatial ordering in the carrier system. T
the basic set of macrovariables is

ˆEc~ t !,ne ,nh ,$nkQ
e ~ t !%,$nkQ

h ~ t !%,EL‰, ~10!

which defines the nonequilibrium thermodynamic space
states~or Gibbs space! of the system.

The MaxEnt-NESOM statistical operator is given, in th
Zubarev approach@14#, by

%«~ t !5expH 2Ŝ~ t,0!1E
2`

t

dt8 e«~ t2t8!

3
d

dt8
Ŝ~ t8,t82t !J , ~11!

where, in the present case,

Ŝ~ t,0!5f~ t !1bc~ t !@Ĥc2meN̂e2mh~ t !N̂h#

1b0ĤL1(
kQ

@FkQ
e ~ t !n̂kQ

e 1FkQ
h ~ t !n̂kQ

h #, ~12!

which is the so-called informational-statistical entropy o
erator@36,37#, and

Ŝ~ t8,t82t !5expH 2
1

i\
~ t82t !ĤJ Ŝ~ t8,0!

3expH 1

i\
~ t82t !ĤJ . ~13!

The functionf(t) in Eq. ~12! ensures the normalizatio
of the statistical operator@it plays the role of the logarithm o
a nonequilibrium partition function,f(t)5 ln Z̄(t)#. In Eq.
~11!, e is a positive infinitesimal which goes to zero after t
calculation of averages have been performed~the exponen-
tial with e ensures the irreversible evolution of the syste
from the initial state! @14–17,38#. Equation~12! contains the
corresponding basic set of Lagrange multipliers—associa
with the basic set of macrovariables given in Eq.~10!—that
the variational method introduces, namely,

$bc~ t !,me~ t !,mh~ t !,$FkQ
c ~ t !%,$FkQ

h ~ t !%,b0%, ~14!
4-2
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which constitutes a set of intensive nonequilibrium therm
dynamic variables. The macroscopic state of the system
completely described by the set defined in Eq.~14!, or,
equivalently, by the set of macrovariables of Eq.~10! @10–
17,38#.

We introduce the alternative formbc(t)[1/kBTc* (t)
whereTc* is called the quasitemperature of the thermaliz
nonequilibrium carriers, andme and mh are quasi-chemica
potentials @34,35,39,40#. For the particular case of th
phonons in equilibrium with the reservoir we haveb0
51/kBT0 . The functionsF in Eq. ~14! are the Lagrange mul
tipliers associated with the inhomogeneities in the car
system. Once the steady state is achieved all these quan
become time independent.

Let us now consider the equations of evolution for t
basic macrovariables of Eq.~10!, which are consistently de
rived in the MaxEnt-NESOM-based nonlinear quantum
netic theory@20#. Formally, these are Heisenberg equatio
of motion for the basic dynamical variables averaged o
the nonequilibrium ensemble, which can be written in ter
of collision operators@20#. We restrict the calculations to th
Markovian limit @41#, that is a satisfactory approach in th
case of weak coupling@42#. This can be considered as
far-reaching generalization of Mori-Heisenberg-Lange
equations@43#, and we recall that the Markovian approxim
tion implies in retaining binary collisions only.

The equation of evolution for the carriers’ energy is

d

dt
Ec~ t !5Jc f

~2!~ t !1JcL
~2! , ~15!

where

Jc f
~2!~ t !5

2p

\ (
kak

I k @~v!ulku2ek
a~ f k11/2k

a ~ t !

2 f k21/2k
a ~ t !!#d~\v2ek11/2k

a 1ek11/2k
a ! ~16!

corresponds to the rate of energy pumped by the exte
source, and where we have used a spectral representati
the form

^wk
†wk~ t !&5E

2`

` dv

p
I k~v!eivt. ~17!

Moreover,

JcL
~2!~ t !52

2p

\ (
kqg l

(
a

uVgq
l ~a!u2~ek11/2q

a 2ek21/2q
a !

3$ngqf k21/2q
a ~ t !@12 f k11/2q

a ~ t !#2@11ngq#

3@12 f k21/2q
a ~ t !# f k11/2q

a ~ t !%

3d~ek11/2q
a 2ek21/2q

a 2\vgq! ~18!

is the rate of energy exchange between the carriers and
lattice, wherea5e or h for electron or hole, respectively. W
recall thatg stands for the index of the different branches
phonons andl for the different types of carrier-phonon inte
04191
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e(h)(t) are

the populations of carriers at timet and V are the matrix
elements of the carrier-phonon interactions@cf. Eq. ~5!#.

Finally, the evolution equations of the variables descr
ing the inhomogeneities of the system, derived in t
random-phase approximation~cf., for example@33,44#!, are
given by

d

dt
nQ

e ~ t !5Fe~Q,t !, ~19!

d

dt
nQ

h ~ t !5Fh~Q,t !, ~20!

where nQ
e(h) stands for a column vector with componen

nkQ
e(h)(t) with fixed Q, and Fe(h) stands for column vectors

with components

FkQ
e 52

1

i\
EkQ

e nkQ
e 1

1

i\
V~Q!D f kQ

e n~Q,t !

2AkQ
e ~ t !nkQ

e ~ t!1AkQ
h ~ t !nkQ

h ~ t !1RkQ
e ~ t!1NkQ

e ~ t!,

~21a!

FkQ
h 52

1

i\
EkQ

h nkQ
h 2

1

i\
V~Q!D f kQ

h n~Q,t!

2AkQ
h ~ t !nkQ

h ~ t !1AkQ
e ~ t !nkQ

e ~ t !1RkQ
h ~ t !1NkQ

h ~ t !,

~21b!

whereV(Q) is the matrix element of the Coulomb intera
tion between carriers, and we have introduced the quant

EkQ
e~h!5ek11/2Q

e~h! 2ek21/2Q
e~h! , ~22a!

D f kQ
e~h!5 f k11/2Q

e~h! 2 f k21/2Q
e~h! . ~22b!

In the quasi-one-dimensional system~say, a wirelike cyl-
inder with radiusR! the matrix element of Coulomb interac
tion in Eqs. ~21! is given by V(Q)5(2e2/«0L)K0(QR),
with K0 being the Bessel function of order zero. The cont
butions RkQ

a correspond to the carrier-phonon interactio
andNkQ

a (t) are bilinear contributions innkq
a , with a5e or h;

for simplicity we omit writing down the cumbersome expre
sions for these two contributions, since they are not going
be used explicitly in what follows. Finally,

AkQ
a ~ t !5ulQ

~a!u2I Q~EkQ
a /\! ~23!

is the contribution arising out of the coupling with the exte
nal source,lQ

(a) is introduced in Eq.~6!, andI Q is defined in
Eq. ~17!.

In the absence of the source (I Q50), Eqs.~19! and ~20!
describe the different kinds of mechanical motions@33# av-
eraged over theequilibrium state when the nonlinear term
can be neglected~i.e., takingNkQ

a 50, since the amplitudes
4-3
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are very small!. They correspond to the single-particle exc
tations with the excitation spectrum given by the Bohr f
quencies

vkQ
a 5~ek11/2Q

a 2ek21/2Q
a !/\5EkQ

a /\, ~24!

and two types—for this double component plasma—of c
lective excitations consisting in the so-calledupper and
lower plasma waves~plasmons!, with, respectively, the dis-
persion relations

v1~Q!5j1QAu ln~QR!u, ~25!

v2~Q!5j2Q, ~26!

for the quasi-one-dimensional system~in the case of bulk
samples they correspond to the so-called optical and ac
tical branches of plasma wave excitations!. In Eqs.~25! and
~26! j6 are constants with dimension of velocity. The e
pressions of Eqs.~24!–~26! correspond to the frequencies
possible oscillation in the system, but the motion is of cou
dampened because of the interaction with the lattice vib
tions, an effect carried on by the termsR in the equations of
evolution. We recall that the collective excitations are a
sult of the presence of Coulomb interaction in the term c
taining V(Q).

Let us consider the steady state that sets in—after a r
transient has elapsed—when the system is kept under
constant action of the external source. The homogene
steady state is characterized by the constant-in-time varia
Ec , ne , nh , and EL . In the steady state we have th
dEc /dt50 in Eq. ~15!, meaning a balance between the ra
of pumped energy@Eq. ~16!# and the rate of energy relaxe
to the phonons@Eq. ~18!#. Except at very high levels of ex
citation, the phonons can maintain the global carrier’s ene
in equilibrium at a quasitemperatureTc* 'T0 .

We proceed next to analyze the behavior of variablesnkQ
a

~a5e or h!, that are null in the homogeneous steady sta
looking for the possible instability of this stationary sta
against the formation of a spatial pattern, i.e., whennkQ

a can
become different from zero in steady conditions. For t
purpose we use standard linear stability analysis, and we
the evolution ofnkQ

a after imposing an arbitrary small pe
turbation of the form

nkQ
a 5hkQ

a elt, ~27!

whereh is an arbitrary infinitesimal amplitude andl is the
complex numberl5 iv2g, whereg and v are real num-
bers. Since the amplitudes for the inhomogeneities are nu
the homogeneous state, the quantitiesNkQ

a (t) in Eqs. ~21!
can be neglected since they are bilinear in the amplitudeh.

At low intensities of the pumping source the quantityg is
positive, the perturbation of Eq.~27! only regresses, and th
homogeneous stationary state remains stable. This is the
called thermally chaotic regime corresponding to the lin
regime around equilibrium where Prigogine’s theorem
minimum entropy production@6# excludes the possibility o
emergence of complex behavior. If an instability arises a
sufficient high intensity of the pumping source, i.e., when
04191
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‘‘sufficient distance’’ from the Onsagerian regime has be
achieved, it is characterized byg50 at this critical intensity.
Then, takingg50 in Eq. ~27! and introducing the resulting
expression in the linear part of Eqs.~21!, we find for each
componentnkQ

a (t) that

\vhkQ
e [\vkQ

e hkQ
e 2V~Q!@ f̄ k11/2Q

e 2 f̄ k21/2Q
e #n̄~Q!

1 i\AQ
e hkQ

e 2 i\AQ
h hkQ

h , ~28a!

\vhkQ
h [2\vkQ

h hkQ
h 1V~Q!@ f̄ k11/2Q

h 2 f̄ k21/2Q
h #n̄~Q!

1 i\AQ
h hkQ

h 2 i\AQ
e hkQ

e , ~28b!

where the electron-phonon contributions,Ra in Eqs. ~21!,
have been neglected. In Eqs.~28! we have introduced the
function

f̄ k
a5@11exp$b@ek

a2ma#%#21, ~29!

with b.1/kBT0 , ma being the chemical potentials at tem
peratureT0 and densitiesne andnh , and

n̄~Q!5(
k

~hkQ
e 1hkQ

h !. ~30!

We notice that in the usual conditions, i.e.,T0.300 K and
nh of the order or smaller than 106 cm21, the populations in
the homogeneous steady state of Eq.~29! can be approxi-
mated by

f̄ k
a.S 2p\2

ma* kBT0
D 1/2

na exp$2ek
a/kBT0%, ~31!

an expression resembling a Maxwell-Boltzmann distribut
at temperatureT0 and concentrationsne andnh for a quasi-
one-dimensional system.

Having fixed g50 we now look for the eigenvaluesl
5 iv, which are the roots of the characteristic equations
tained after we add both Eqs.~28! and next sum overk, i.e.,

n̄~Q!«~Q,v!50, ~32!

where

«~Q,v!512V~Q!(
k

j 1~k,Q,v!1 i j 2~k,Q,v!

j B~k,Q,v!1 i j 4~k,Q,v!
, ~33!

with

j 1~k,Q,v!52D f kQ
e ~\v2EkQ

h !

1D f kQ
h ~\v2EkQ

e !, ~34a!

j 2~k,Q,v!5~D f kQ
e 2D f kQ

h !~AkQ
e 1AkQ

h !, ~34b!

j 3~k,Q,v!5~\v2EkQ
e !~\v1EkQ

h !, ~34c!

j 4~k,Q,v!52~\v1EkQ
h !AkQ

h

2~hv2EkQ
e !AkQ

e . ~34d!
4-4
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Equation~32! has two solutions; one isn̄(Q)50 which
corresponds to the homogeneous state~with nkQ50! and a
second one, forn̄(Q)Þ0, that corresponds to the emergen
of a spatiotemporal ordering, i.e.,

«~Q,v!5«8~Q,v!1 i«9~Q,v!50, ~35!

which requires that both the real («8) and imaginary («9)
parts are zero, i.e.,

«8~Q,v!512V~Q!(
k

M8~k,Q,v!

D~k,Q,v!
50, ~36a!

«9~Q,v!52V~Q!(
k

M9~k,Q,v!

D~k,Q,v!
50, ~36b!

with

M8~k,Q,v!5 j 1~k,Q,v! j 3~k,Q,v!

1 j 2~k,Q,v! j 4~k,Q,v!, ~37a!

M9~k,Q,v!5 j 2~k,Q,v! j 3~k,Q,v!

2 j 1~k,Q,v! j 4~k,Q,v!, ~37b!

D~k,Q,v!5@ j 3~k,Q,v!#21@ j 4~k,Q,v!#2. ~37c!

An analysis of Eqs.~36! shows that«8 is an even function
of v while «9 is an odd function, and it can be shown th
there isnot a simultaneous solution of the system for afre-
quencyv different from zero~moreoverv«9 is always posi-
tive except forv50 where it is null!. This is a result of deep
physical meaning: in fact, the quantity«(Q,v) is the wave-
vector- and frequency-dependent dielectric function~the
electronic contribution! of the system. Then this quantity ha
several physical properties, in particular, the prod
v«9(Q,v) is the absorption coefficient of electromagne
radiation@45#, which is always positive and null only forv
50. The roots of the real part provide the dispersion relat
v vs Q of the elementary excitations in the carrier’s flu
@44#. The imaginary part times the frequency has a pea
the points where the real part is zero; this reflects the fact
the real and the imaginary parts are not independent,
related by the so-called Kramers–Kro¨nig relations @45#,
which are a consequence of the principle of causality. C
sequently, there are no solutions of Eq.~32! for frequencies
different than zero and, then, a complex behavior in time
a limit cycle, for instance, cannot be expected. Therefore,
system of mobile carriers in the lattice background is sta
against time-dependent fluctuations.

However, in the static case (v50), the imaginary part of
the dielectric function is identically zero for anyQ, i.e.,
«9(Q,0)50. Therefore, a stationary spatial ordering can f
low for a critical value of the intensityI c of the pumping
source if the real part of the dielectric function becomes z
for certainQ, i.e.,

«8~Q,0!512V~Q!(
k

M8~k,Q!

D~k,Q!
50, ~38!
04191
t

t

n

at
at
ut

-

s
e

le

-

o

whereM8(k,Q) and D(k,Q) are the quantities defined i
Eqs.~37a! and ~37c!, respectively, but evaluated inv50.

Therefore, if such root exists for a givenI c at a valueQ
5Qc , the homogeneous steady state becomes unst
against the emergence of a structure of the form

n~z!5nh2ne1
1

2
$@nh~Qc!1ne~Qc!#e

iQcz81c.c.%

~39!

~in units of the electronic chargee!, wherenh@ne . This is a
steady-state charge-density wave of wavelength 2p/Qc run-
ning in the direction of thez axis of the quasi-one-
dimensional system, which is superimposed on the homo
neous background with densitynh . At this point
~characterized byI c andQc! we have a bifurcation point o
solutions, with the solution describing the emergence of
spatial pattern separating out from the so-called thermo
namic solution corresponding to the homogeneous ste
state. This is a first bifurcation point: we can think of it as
kind of fork bifurcation, where the branches correspond
to the ordered state, characterized by the amplitudeun(Qc)u,
emerges from the so-called thermodynamic branch (un(Q)
u50) at the critical intensityI 5I c . Moreover, we anticipate
that the firstQc corresponds to the limit of very long wave
lengths, i.e.,Qc going to zero.

The charge-density wave of Eq.~39! is a static~or ‘‘fro-
zen’’! plasma wave, a kind of soft mode that is in the orig
of ferroelectricity, antiferroelectricity, and helielectricity i
dielectrics~a ‘‘frozen’’ vibrational mode!. Therefore, we can
consider the emerging structure as a helielectric state
driven electret state in a biosystem, i.e., a bioelectret@29#.

In this case we have an interesting example of emerge
of a dissipative structure in Nicolis and Prigogine’s sen
@4–6#: Coulomb interaction producing collective modes~the
plasmons of the microscopic dynamics! and dissipative ef-
fects~of macroscopic thermohydrodynamic kinetics! produc-
ing thermal disorganization are involved in a ‘‘tug of war
towards the production of a macroscopic ordered struct
At low pumping intensities, when the system is near equil
rium ~the so-called strictly linear regime of nonequilibriu
thermodynamics! morphological ordering cannot be ex
pected because of Prigogine’s theorem of minimum entr
production, as it has already been noted. Only in conditi
sufficiently away from equilibrium are the nonlinear cont
butions capable to work against the tendency to disorder~sta-
bilizing a homogeneous state! leading to the emergence o
macroscopic ordering; this is discussed in detail in the f
lowing section.

III. COMPLEX SPATIAL PATTERN

Before proceeding further, two points have to be tak
into account: one is thatQ is not a continuous wave numbe
but takes discrete values because the sample is finit
length. Because of boundary conditions~the wave amplitude
is zero at the borders! the possible wave vectors are given b
Q5l p/L, wherel is an integer (l 51,2,3,...,) andL is the
length of the sample. The second point is thatQ is bounded
4-5
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between its lowest possible valuep/L and an upper value
l Mp/L, becauseQ must be smaller or at most equal to th
Brillouin radiusQB5p/a; thenl M is the integer part ofL/a
~if we takeL51 cm anda5100 Å, thenl M5106!.

Furthermore, once the first bifurcation point atI c has been
reached, for increasing pumping intensity beyondI c , i.e., for
I .I c , we would need to analyze«(Q,0) after the inhomo-
geneous state has set in a steady-state condition. This im
a return to Eqs.~21! and to include the nonlinear termsN.
However, since the amplitudesna(Qc) contribute quadrati-
cally to «(Q,0) and are very small in the neighborhood
the critical point, we can neglect these terms in a first
proximation. Thus, we analyze, forI .I c , the real part of the
dielectric function as given by Eq.~38!.

We illustrate these results using number characteristic
ana-helix structure in proteins@23#. We takea;100 Å, and
thenQB;3.143106 cm21, andnh will be fixed in the range
of 105– 106 cm21, while the concentration of the thermall
excited electrons in the conduction band is much smaller;
hole temperature is fixed at 300 K. For the electron and h
energy dispersion relation we use a parabolic law of the fo

«k
h~e!5

1

2
Gh~e!a

2k2, ~40!

whereGh(e) is a constant with dimension of energy. In th
calculations we take the continuous limit fork, meaning that
the summation overk is transformed into an integration o
the form

(
k

→ L

2p E
2p/a

p/a

dk. ~41!

Finally, the coupling constantsAkQ
e and AkQ

h of Eq. ~23!
are taken as independent ofk andQ and equal to each othe
without loss of generality (AkQ

h 5AkQ
e 5A).

Because of the singularity in the potentialV(Q) whenQ
goes to zero, one expects a first root of Eq.~38! for very
small values ofQ ~say the minimum possible valuep/L!.
After performing an expansion of the right-hand side~rhs! of
Eqs. ~37! in powers ofQ aroundQ50, we obtain the ap-
proximate expressions

M8~k,Q!52A2b~Ghf̄ k
h2Gef̄ k

e!~Ge2Gh!

2ba4~k•Q!2Ge
2Gh

2~ f̄ k
e1 f̄ k

h!, ~42!

D~k,Q!5A2~Ge2Gh!21a4~k•Q!2Ge
hGh

2, ~43!

where f̄ k
e and f̄ k

h are the populations given in Eq.~31!.
For Eq.~38! to have a root it is necessary that the seco

term in Eq.~42! be negative. As a ruleGe of the conduction
band is larger thanGh of the valence band and, then, it mu
be verified thatGhf̄ k

h.Gef̄ k
e , which requires that the concen

trationnh must be larger thanne . This is the case in proteins
which arep doped, for a sufficiently large value ofA which
incorporates the intensityI of the source@cf. Eq. ~23!#. For
I 50 ~then A50! no zero of«8(Q,0) is possible. As the
intensity I increases, the first instability occurs at the min
04191
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mum possible value ofQ, namely,Qc5p/L; in this case, the
critical value ofA is Ac'10220 erg for a lengthL'1 cm.

Let us now consider the neighborhood of the first bifu
cation atAc andQc . For that purpose we need to obtain th
dielectric function in the state, and carry out stability ana
sis of the first bifurcating branch. For weak-to-moderate
tensity aboveI c , such that we can neglect in a first approx
mation the bilinear contributions~leading to mode mixing!,
the analysis proceeds as in Sec. II above. The homogen
and steady state of reference is functionally stable, and
instability follows in the presence of additional inhomog
neous fluctuations. Figure 1 shows the real part of the die
tric function for several values ofA. We see that, withA
increasing beyondAc , the dielectric function vanishes fo
values ofQ larger thanQc5p/L. If for a givenA the roots
of e8 occurs at wave-vectorsQl5 lp/L, then the instabilities
of the homogeneous state follow against sinusoidal wa
with wave numbersp/L,2p/L,...,lp/L. Therefore, these
modes are contributing to compose the spatial charge den
in the system, leading to a structure of the form

n~z!5nh1 (
n51

n5 l

@nh~np/L !ei ~np/L !z1c.c.#1nNL~z!,

~44!

once we disregard the contribution of the dilute gas
electron-type carriers, and wherenNL(z) contains additional
terms involving mode mixing, arising out of the nonline
coupling terms. However, in conditions leading to the em
gence of only small amplitudesnh(Q) ~weak-to-moderate
pumping intensities!, the linear terms would predominate
This suggests that, with increasing intensityI above the criti-
cal intensity I c ~corresponding to the first bifurcation!, a
charge-density wave composed of a large number of nor
modes will emerge in the system.

Figure 2 shows the dependence of the critical wave nu
bers with the coupling intensityA for three different values

FIG. 1. The real part of the static dielectric function depend
on wave number, for several values of the coupling strength,A1

510218, A2510217, A3510216, A4510215 erg. The roots are
clearly evidenced, as well as the region where it becomes nega
4-6
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of the hole concentration; the range of values ofQ contrib-
uting to the formation of the spatial structure increases w
increasing doping, but in all cases tends to a limiting val

We end this section with considerations of a general ch
acter. First we notice that, from the physical point of vie
the bifurcation point corresponds to a zero of the static
electric function for a certain wave number. Therefore,
those wave numbers the so-called dielectric response f
tion «21(Q,0) becomes infinite, indicating an instability o
the homogeneous charge density against the formation o
organized structure. This has a complete analogy with
criteria of phase transitions in equilibrium. In fact, in th
latter case, the critical~or transition! point is characterized by
a singularity in a particular physical property, for examp
an infinite value of the specific heat in changes of structu
an infinite value of the magnetic susceptibility in a ferroma
netic transition, etc. In the first case just mentione we h
DQ5CDT, by definition of the specific heatC, whereDQ
is the heat provided to the sample andDT the change in
temperature. In this caseC goes to infinity in the transition
point and, sinceDQ is finite, the temperature remains co
stant as the transition proceeds. In the second case ment
above, the magnetic displacement vector and magnetic
are related byB5mH and then as the magnetic permeabil
m goes to infinity, the magnetic displacement vector va

FIG. 2. Linear stability diagram associated with bifurcations
the homogeneous and steady-state solutions, for three values o
hole density~in cm21!. First instability occurs in the limitQ→0,
where the minimum of the marginal stability is located.
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ishes; therefore, sinceB524pM , a spontaneous ferromag
netizationMÞ0 must emerge@46#.

Consider now the case of nonequilibrium systems a
trarily away from equilibrium. We can introduce ideas th
have a close analogy with the case of phase transitions,
keeping in mind that the role of phases in equilibrium is no
played by the stationary dissipative structure. For the ca
ers’ system described here, since the electric field isE(Q)
5«21(Q,0)D(Q), when«21 goes to infinity the electric dis-
placement vectorD(Q) must be zero. Therefore, the relatio
D(Q)5E(Q)14pP(Q) implies in the emergence of a spon
taneous and space-dependent electric polarizationPÞ0,
namely, the charge-density wave we have evidenced. Th
similar to the case of electrical polarizable phase transiti
in equilibrium, with Q50 for ferroelectrics,uQu5p/a for
antiferroelectrics~a is the lattice parameter in the direction o
Q!, and arbitraryQ for helical-electrical materials.

After the first and following bifurcations have occurre
the spatially ordered state consists of a complicated struct
containing the linear superposition of modes as in Eq.~44!
plus nonlinear contributions~not shown!. This leads us to the
prediction of a particular asymptotic phenomenon where
growing number of normal modes~with ever increasingI!,
interacting together to compose the local densitynh(z),
would lead to an excess of modes in the system. It is wo
noting the analogy with Landau’s theory of turbulence@47#,
but with the difference that in the latter case there is
overexcess of frequency-dependent oscillations~so it is a
time-dependent problem!, while here there is an overexces
of steady-state space-varying modes~a space-dependen
problem!.

IV. THERMODYNAMIC ANALYSIS OF THE
MORPHOLOGICAL TRANSITION

Given initial conditions the complete evolution of th
nonequilibrium-dissipative macroscopic state of the syst
is determined by solving Eqs.~19! and~20!. The initial con-
ditions in this case refer to the initial preparation of the s
tem near or far away from equilibrium.

The dissipative character of the set of equations is
flected in that, when embedding the equations of evolut
into the space of the nonequilibrium thermodynamic sp
defined by the set of variables of Eq.~10!, a contraction of an
element of volume is obtained, each point of which follow
the evolution laws. This very important property can be e
pressed by an inequality@48,49#, which in the present case i
given by

1

t2t0
E

t0

t

dt8 div (
a

Fa~Q,t8!,0, ~45!

where

div (
a

Fa~Q,t8!5(
a

(
k

d

dnkQ
a ~ t !

FkQ
a ~ t !, ~46!

andd stands for functional derivative@50#. Using Eqs.~21!
we obtain that

f
the
4-7
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d

dnkQ
e ~ t !

FkQ
e 52

1

i\
EkQ

e 1
1

i\
V~Q!D f kQ

e 1AkQ
e ,

~47a!

d

dnkQ
e ~ t !

FkQ
h 5

1

i\
EkQ

e 2
1

i\
V~Q!D f kQ

e 1AkQ
h . ~47b!

In Eqs. ~47! the contributions fromR and N have been
disregarded sinceN is quadratic in the amplitudes and th
effect of the phonons inR is small when compared to th
magnitude ofA, which is proportional to the source intensit
Next, summing Eqs.~47! overk, and using Eq.~46! we have

div Fa~Q,t !.2(
k

AkQ
a . ~48!

Since the coefficientsA are positive, the divergence in Eq
~48! is negative and, then, the quantity within the integral
Eq. ~45! is always negative and the inequality is verified.

To study the thermodynamical aspects of the problem
introduce the informational entropy in MaxEnt-NESOM
based IST@10–13#, in this case given by

S̄~ t !52Tr$%«~ t !Ŝ~ t,0!%5f~ t !1S̄u1(
kQa

FkQ
a ~ t !nkQ

a ~ t !.

~49!

In Eq. ~49!, we have separated out the contributions from
homogeneous part,S̄u ~corresponding to the variablesEc ,
nh , nh , andEL!, from those of the inhomogeneous part~cor-
responding to the amplitudesnkQ

a !.
First let us calculate the average values of the quant

n̂kQ
a in terms of their associated multipliers,FkQ

a (t), that is,

nkQ
a ~ t !5Tr$n̂kQ

a %«~ t !%5Tr$n̂kQ
a %̄~ t !%, ~50!

which are calculated using Heims-Jaynes perturbation
pansion for averages@51#; in a linear approximationin the
Lagrange multipliersFkQ we obtain

nkQ
a 5M kQ

a FkQ
a ~ t !, ~51!

with

M kQ
a 5

D f̄ kQ
a

bEkQ
a .

Q•¹k f̄ kQ
a

bQ•¹kek
a 5

Q•¹kek

bQ•¹kek

] f̄ kQ
a

]ekQ
a

5kBTc*
] f̄ kQ

a

]ekQ
a ~52!

calculated in the limit of smallQ. Equation ~52! is time
independent because of the assumed stationary charac
the homogeneous state, i.e.,b andm are constant in time. We
recall thatFkQ

a (t)5dS̄(t)/dnkQ
a (t) which, along with the re-

lationsdS̄(t)/dEc5b anddS̄(t)/dN52bm, constitute the
nonequilibrium equations of state in IST.
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We can now study the contribution of the morphologic
transition to the informational entropy in IST. This is done
terms of the quantity

V5
DS̄

S̄0
ss

5
S̄0

ss2S̄ss

S̄0
ss

52(
kQa

FkQ
a~ss!nkQ

a~ss!52(
kQa

M kQ
a uFkQ

a~ss!u2

52(
kQa

@M kQ
a #21unkQ

a~ss!u2, ~53!

obtained after using Eq.~51!. In Eq. ~53! S̄0
ss is the informa-

tional entropy of the homogeneous state in the absence o
nonhomogeneous contribution, whileS̄ss is the informational
entropy in the presence of the spatial ordering, both take
the steady state.

The quantityV plays the role of a Kullback-like orde
parameter@52#, which is a positive quantity sinceM is nega-
tive for nonzeronkQ

h @] f /]e,0 in Eq. ~52!, because the
populations decrease with increasing energies#. This implies
that S̄,S̄0 , indicating that the informational entropy de
creases as the amplitude of the charge-density wave
creases with increasing intensity beyond the critical valu

Let us consider the immediate neighborhood of the fi
bifurcation. Using Eqs.~28! in the steady state~ss!, i.e., v
50, we obtain a linear relation between the individual a
plitudesnkQ

a and the wave amplitudena(Q), namely,

nkQ
a~ss!.CkQ

a na~ss!~Q!, ~54!

where

nk
a~ss!~Q!5(

k
nkQ

a~ss! , ~55!

CkQ
a 5V~Q!(

k

f̄ k11/2Q
a 2 f̄ k21/2Q

a

«k11/2Q
a 2«k21/2Q

a 1 iAkQ
a . ~56!

Using these results, after some algebra we find that

DS̄~ss!5G~Q!unss~Q!u2;F I

I c
21G1/2

, ~57!

once we takeAkQ
a 5A5lI @cf. Eq. ~23!#, and where

G~Q!52(
ka

M kQ
a uCkQ

a u2, ~58!

n~ss!~Q!5(
a

na~ss!~Q!. ~59!

Equation ~57! implies that, in the immediate neighbo
hood of the first bifurcation, the order parameterV of Eq.
~53! increases with the pumping intensity following
square-root law. This result has a strong resemblance
the square-root law for the order parameter in Landa
theory of second-order phase transitions@46#.
4-8
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We consider next the global informational-entropy pr
duction in IST, which gives relevant information on the d
sipative behavior of the system. This nonequilibrium therm
dynamic function is given by

s̄~ t !5
d

dt
S̄~ t !5

d

dt
Su~ t !1(

kQa
FkQ

a ~ t !
d

dt
nkQ

a ~ t !

.(
kQa

FkQ
a ~ t !FkQ

a ~ t !, ~60!

where we have used thatdSu(t)/dt.0 along with Eqs.~19!
and ~20!, and then it depends almost exclusively on the
homogeneous variables. The informational-entropy prod
tion can be decomposed in two terms in the form

s̄~ t !5s̄~ i !1s̄~e! , ~61!

wheres̄ ( i ) is the internal contribution, which results from th
internal interactions in the system, ands̄ (e) is the external
contribution, due to interactions with the surrounding. W
note that in the limiting case when the theory describes
restricted classical irreversible thermodynamics~when local
equilibrium is assumed!, the quantitys̄ ( i ) becomes simply
the entropy production. In equilibrium and in local equili
rium, the informational entropy coincides with the definitio
given by Clausius. In the linear domain of irreversible th
modynamics the theorem of minimum entropy product
excludes the possibility of macroscopic ordering~it is the
domain of the thermal chaos!; as already pointed out, com
plexity of the type described here, requires nonlinear con
butions in the kinetic equations and an accompanying bre
ing of Onsager’s symmetry relations@11,12#.

Considering the steady state, wheres̄ss50 and thens̄ ( i )
ss

52s (e)
ss and using Eqs.~51! and ~54!, we can write the

different contributions in the form

s̄~ i !
ss 5

1

i\ (
kQa

uV~Q!u2~ f k11/2Q
a 2 f k11/2Q

a !uCkQ
a u2unss~Q!u2,

~62!

s̄~e!
~ss!5(

kQ
AkQ@M kQa

ss #21uCkQ
a u2unss~Q!u2. ~63!

If we changeQ by 2Q and note thatCk,2Q5CkQ* and
M k,2Q5M kQ* ~asterisks indicate complex conjugate! we ob-
tain that boths̄ ’s in Eqs. ~62! and ~63! are real quantities
Furthermore, the external production of informational e
tropy is negative@M,0; cf. Eq. ~52!#, meaning that infor-
mational entropy is pumped out of the system, while
internal contribution is positive, which can be considere
manifestation of the second law of thermodynamics. We
call that the informational entropy in IST satisfies anH theo-
rem, that we have called a weak principle of increase
informational-statistical entropy@11–13#.

Two other important nonequilibrium thermodynam
functions are:~a! the rate of change of the informationa
entropy production due to the change in time of the Lagra
04191
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multipliers ~or intensive nonequilibrium thermodynam
variables!, which is given in this case by

dFs̄~ t !

dt
5(

kQa

d

dt
FkQ

a ~ t !
d

dt
nkQ

a ~ t !

5(
kQa

@M kQa#21
d

dt
nkQ

a* ~ t !
d

dt
nkQ

a ~ t !

5(
kQa

@M kQa#21uFkQ
a ~ t !u2, ~64!

and ~b! the rate of change due to the change in time of
macrovariables, that is,

dQs̄~ t !

dt
5(

kQa
FkQ

a ~ t !
d2

dt2
nkQ

a

.(
kQ

a @M kQa#21nkQ
a d

dt
FkQ

a ~ t !. ~65!

The quantity of Eq.~64! is negative@M,0; cf. Eq.~52!#,
as it should, since this result is a manifestation of the th
rem of evolution in IST@12#, a generalization of the thermo
dynamic principle of evolution of Glansdorff-Prigogin
@6,53#. This principle states that along the trajectories in t
thermodynamic space of states, governed by the MaxE
NESOM kinetic equations@Eqs.~19! and~20! in the present
case#, the rate of change in time of the informational-entro
production resulting from the rate of change of the Lagran
multipliers must be a negative quantity.

We turn now to the question of the stability of the charg
density wave. Linear stability analysis in Lyapunov style
the mathematical way, but an alternative and equivalent
proach with physical meaning is the~in!stability criterion in
IST @12#, which is a generalization of the Glansdorf
Prigogine criterion@6,53# in nonlinear classical thermody
namics. It states that a solution~structure! is stable when two
thermodynamic functions have the opposite sign: One
these functions isdS̄, which, after using Eqs.~49! and~51!,
is given by

dS̄~ t !5(
kQa

CkQa
~ss! udnkQ

a ~ t !u2.0, ~66!

wheredn stands for an arbitrary small change in the ba
variable nkQ

a from its value in the steady state. The oth
quantity is the second functional derivative of the inform
tional entropy taken in the steady state, i.e.,

CkQa
~ss! 5

d2S̄

d2nkQ
a G ss

. ~67!

The positiveness of the rhs Eq.~66! is a consequence tha
it is a manifestation of the curvature of the information
entropy in the steady state, which is a maximum becaus
MaxEnt. The quantity defined in Eq.~67! is the change in
time of the informational entropy, namely,
4-9
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d

dt

1

2
dS̄~ t !5(

kQa
CkQa

~ss! d

dt
udnkQ

a ~ t !u2

5(
kQa

CkQa
~ss! FdnkQ

a ~ t !
d

dt
dnkQ

a* ~ t !

1dnkQ
a* ~ t !

d

dt
dnkQ

a ~ t !G
5(

kQa
CkQa

~ss! @dnkQ
a ~ t !FkQ* ~ t !1dnkQ

a* ~ t !FkQ
a ~ t !#

52(
kQa

CkQa
~ss! AkQ

a udnkQ
a ~ t !u2, ~68!

once we use the equations of evolution, Eqs.~19! and ~20!,
after neglecting the terms withR and N, and taking into
account thatdnkQ

a /dt5d(nkQ
a(ss)1dnkQ

a )/dt5ddnkQ
a /dt. The

quantity defined in Eq.~68! is also negative, and then, a
cording to the~in!stability theorem, the organized state
charge density waves is stable with respect to the homo
neous stationary state.

Note that the quantity of Eq.~68! is the so-called exces
entropy production function, which measures the differen
between the informational-entropy production in the d
placed state, bydn, and that in the steady state.

V. CONCLUSIONS

We have evidenced the possible emergence of morp
logical ordering in the form of static charge-density waves
the carrier’s system of biopolymers, as thea-helix secondary
structure in proteins. This is a kind of dissipative structure
Prigogine’s sense, which is only possible in systems g
erned by nonlinear kinetic equations and when driven su
ciently far from equilibrium, outside the linear regime
classical thermodynamics. Ordered states in the latter reg
are excluded because of Prigogine’s theorem of minim
entropy production. Self-organization can only arise wh
Onsager’s reciprocal relations~strictly valid in the linear re-
gime around equilibrium! are violated, what is possible onl
in the nonlinear domain.

In the present case the spatial organization is a co
quence of the organizing effects forced by Coulomb inter
tion between the carriers, responsible for their collective m
tion in the form of plasma waves. We can say that
emergence of the organized static charge-density waves
consequence of the formation of steady states of pla
04191
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waves~kind of ‘‘frozen’’ plasmons!. In the interplay between
the organizing Coulomb interaction and dissipative effe
working to lead the system to disorganized thermal cha
the former overcomes the latter at a certain threshold of
tensity of the external pumping source. This happens w
the system is sufficiently far from equilibrium and nonline
effects become strong enough compared with relaxation~dis-
sipative! effects.

In Sec. IV, we have described some properties of t
dynamical system, like the contraction of a volume elem
in the thermodynamic Gibbs space, each point of it followi
the equations of evolution, what evidences the overall di
pative character of the dynamics. We notice that only par
the pumped energy is redirected to the formation of or
instead of being wasted out in thermal motion. Moreover,
morphological transition has been characterized by an o
parameter@cf. Eq. ~53!#, which has the interesting propert
given in Eq.~57!, which resembles the behavior of the ord
parameter in Landau’s theory of second-order phase tra
tions. This is expected since we have used a mean-fi
theory in a many-body system.

Nonequilibrium thermodynamic properties have also be
considered, as the production of informational-statistical
tropy, and its separation in internal and external contrib
tions. The principle of evolution has been also verified, a
the stability of the ordered space against the homogene
state. The internal production of informational-statistical e
tropy is positive, which is a manifestation of anH theorem,
further reinforcing the dissipative character of the equatio
of evolution.

As final words, we recall A. Szent-Gyo¨rgyi and
McLaughlin’s arguments that organization of electrons~as
mobile carriers! in living matter may have biological conse
quences. The present paper has stressed that such order
possible as a result of biological systems being open syst
working in far-from-equilibrium conditions.
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