PHYSICAL REVIEW E, VOLUME 65, 041914
Morphological ordering in biopolymers: Informational statistical thermodynamic approach
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We consider the question of the emergence of morphological ordering in an open far-from-equilibrium
model of a biopolymer. We apply informational statistical thermodynamics, which was shown to be appropriate
to deal with dissipative systems displaying complex behavior. The formation of nonlinear spatial ordering
consisting in the emergence of static charge-density waves, producing a bioelectret-type state, is evidenced.
This kind of behavior may arise in biopolymers under the influence of biochemical processes.
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[. INTRODUCTION In the same pap¢R2] the possibility was conjectured that
the situation may improve in the case of systems with low

In the field of systems with complex behavi@omplex dimensionality(like semiconductor quantum wiredn par-
systemdor shorp [1-3], the study of self-organization with ticular, it is expected that such phenomenon may follow
emergence oflissipative structurefas deserved special in- more easily in the case of biopolymers, e.g., dhkelix sec-
terest[4—7]. We address here the possibility of the emer-Ondary structure in protein and peptides, DNA chains, etc.
gence of morphological ordering in quasilinear systems, e.gl[23], as well as in doped organic polymers, like vinyls, ac-
biopolymers, when driven far from equilibrium. It is shown etanilide, etc[24,25. We note that biopolymers behave as
that the interplay of collective behavidiplasma waves Semiconductorlike materials of thedoped type[26], and
Coupied to dissipative processes can lead to the emergence@mit efficient mechanisms of excitation via biochemical
such spatial ordering. processegsee, for example[27]). This is an interesting

We deal with this question on the basis of the so-callecPoint as it was proposed that mobile electrons can have an
thermodynamics of complexif§], which is the application important effect in biological systeni28].
of informational-statistical thermodynami¢iST) [9-13) to We consider here a problem of this kind, namely, elec-
the study of complex systems. The present development ¢fonic carriers in quasi-one-dimensionaitype conducting
IST is based on a nonequilibrium ensemble formalism materials, in particular a wirelike biopolymer. We show how
which is a far-reaching generalization of Gibbs and Boltz-morphological patterns in the carrier system can emerge as
mann approaches, labeled the nonequilibrium statistical ogong-lived spatially organized charges, that is, a kind of bio-
erator method14—17. Its formulation is based on a varia- electret stat¢29]. We present a characterization of the insta-
tional principle, namely, the principle of maximization of the bility and an analysis of the spatial organization of the carrier
informational entropy[18], and then referred to as MaxEnt- System.

NESOM for short.

A by-product of MaxEnt-NESOM is a generalized nonlin-
ear quantum kinetic theoij14,19,2Q. It provides the equa-
tions of evolution for the basic variables describing the irre-  We consider a quasi-one-dimensional system piaped
versible change in time of the macroscopic state of thaype, consisting of a periodic lattice with lattice parameter
nonequilibrium system. The connection with complexity is| et n,, be the density of holecarriers in the valence or
given by the nonlinear terms that are known to be necessamyonding banyl andn, the density of electrongarriers in the
for complex behavior to arise. conduction or antibonding bandThe densityn, is a result

Recent theoretical studies have suggested the possibilityf thermal excitation or other processes of excitation, and let
of the emergence of a morphological transition in carriem, be much larger than,. Moreover, the concentratian, is
systems in bulk matter when under the action of an externajonsidered to be high enough for the carrier system to be on
source of energy21]. Later work[22] has confirmed this the metallic side of Mott transitiofi30] (this is the case in
result in the case of polar semiconductors continuously illuproteins, where the density is of the order of'®6m=3
minated with ultraviolet radiation. It was shown that the or-[26]), i.e., impurity states and excitons are totally ionized
dered states consist of the formation of stationary chargeith holes and electrons acting as mobile carriers. Further-
density waves. However, it was pointed out that themore, these carriers are driven away from equilibrium by an

observation of this phenomenon under accessible experimegxternal pumping sourcee.g., electromagnetic radiation or
tal conditions could be unfeasible because of the intense ibjochemical excitatiofi27] in the case of biosystems

lumination required. In effect, because of the poor efficiency The system Hamiltonian is taken as

of the absorption of light, high pumping intensities are nec-

essary to overcome dissipative effects and provide for pattern L

formation, which could produce damage in the sample. H=Hy+H’"+H;, (8]

II. INSTABILITY OF THE HOMOGENEOUS STATE
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where In Egs. (7), o(t) is the corresponding MaxEnt-NESOM
) nonequilibrium statistical operator, which is expressed in
Ho=H.+H_, 2 terms of the basic set of dynamical variabjéd —17.
Concerning the lattice subsystem, we would need to in-
with troduce the populations of the phonons in the different
branches and modes. However, since we are interested in the
oo hp, t et steady state and not in ultrafast transients, we can take the
He Ek: Lech=h-—c+ i, @ phonon modes as thermalized with an external reservoir at
temperaturely, and, then, the lattice has a constant energy
which is the Hamiltonian of the mobile carriers, with(c;) E_. Therefore, the phonons are described by a canonical
and hy(h}) being annihilation(creation operators of elec- distribution with populations given by the Planck-like form
trons and holes in statés(in antibonding or bonding bands, L
respectively, e andef! are the corresponding energy disper- Vyq=[eXpfiw,q/KeTol—1]7 . €)

sion relations, and .
We stress here that the quantities of E@$.are necessary

to describe the spatial ordering in the carrier system. Thus
(4)  the basic set of macrovariables is

{Ec(t),Ne, Ny {NEo (D} {Nfio (D} EL} (10)

. 1
Al=> ﬁwm( b];qbqur 2
av

is the Hamiltonian associated with the lattice vibrations, with

b(b") being annihilation(creation operators of phonons in -\ hich defines the nonequilibrium thermodynamic space of
modeq of branchy; k andq run over the Brillouin zone. The states(or Gibbs spaceof the system.

interaction Hamiltonian between carriers and lattice is given The MaxEnt-NESOM statistical operator is given, in the

by Zubarev approacfl4], by
Ny I(h) T I(e) T _nt ~ t ,
H _qu.y| [V,)Sq h_k+qh_k+v,y§ Ck+qu](b.yq b,y_q), Qs(t):ex% _S(t,0)+J dt! ea(t—t )
(5) -
d .
Whel’eVqu are the matrix elements of the interaction dnd XWS(t’,t’—t)J, (12

indicates the type of interaction: deformation potential in all
cases, plus Fhdich interaction with longitudinal optical vi- where. in the present case
brations, and piezoelectric potential with acoustic vibration ’ P '

[31]. Finally, the Hamiltonian of the interaction of the carri- - _ A - ~
ers with the external source is given by S(1,0)= ¢(t) + Be(t)[He— meNe— n(t)Np]

R +BoHL+ X [FEo(HRs,+Fho(tAls], (12
Ai=3 el hoc el ol e (© Poftu+ 25 [Fla(UMig  Fla(Dfig]. (12
ke

h h ihilati el .. which is the so-called informational-statistical entropy op-
where thep are annihilation operators of elementary eXC'ta'erator[36,3ﬂ, and

tions in the sourcéwhich “feeds” the system with energy

and momentum \ is the coupling strength, ang is the R 1 .
guasimomentum—or crystalline momentum—transferred in S(t’,t —t)=exp{ ——(t' —t)H]S(t’,O)
. ; if
the process. We keep the vector notationkpg, etc., since
both directions of propagation along the length of the system 1 .
are possible. xex%m(t’—t)H]. (13

According to MaxEnt-NESOM we next need to specify
the basic set of variables for the description of the nonequi-
librium macroscopic state of the system characterized by th8]c
Hamiltonian of Eq.(1). This is done in terms of the energy
E.(t), the concentrations, andn,, (these densities are con-

stant once they are fixed by doping and thermal excitatio i
. calculation of averages have been perfornitb@ exponen-
[32,33) [34,35, and the quantities _ . . . \
tial with e ensures the irreversible evolution of the system
e (t)=Tr{Ac. o (1), () =TrA o(t)Y, (7 from the initial stat¢[14—17,38. Equation(12) contains the
@V {Moe (V) ot {Moe(v, (@) corresponding basic set of Lagrange multipliers—associated
with the basic set of macrovariables given in Ef0)—that
the variational method introduces, namely,

The function¢(t) in Eq. (12) ensures the normalization
the statistical operatdit plays the role of the logarithm of

a nonequilibrium partition functiong(t)=InZ(t)]. In Eq.
{11), eis a positive infinitesimal which goes to zero after the

where

At =cl 1moCk-120,  Bho()=h_t_ 120"\ 10-
O e e e e {BeD) 1), an(D) {FEQ(O} {Flg(D} B} (14)
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which constitutes a set of intensive nonequilibrium thermo-actions; the populations,, are given by Eq(9); fE(h)(t) are
dynamic variables. The macroscopic state of the system ighe populations of carriers at tinteand V are the matrix
completely described by the set defined in E#4), or,  elements of the carrier-phonon interactigng Eq. (5)].
equivalently, by the set of macrovariables of E40) [10— Finally, the evolution equations of the variables describ-
17,38 ing the inhomogeneities of the system, derived in the
We introduce the alternative formB.(t)=1/kgT(t)  random-phase approximatidnf., for example[33,44)), are
whereTy is called the quasitemperature of the thermalizedgiven by
nonequilibrium carriers, ang, and u,, are quasi-chemical
potentials [34,35,39,4Q For the particular case of the . .
phonons in equilibrium with the reservoir we havg anQ(t):(D (Q), (19
=1/kgTg. The functions= in Eq. (14) are the Lagrange mul-
tipliers associated with the inhomogeneities in the carrier d
system. Once the steady state is achieved all these quantities —ng(t) =®"(Q,1), (20)
become time independent. dt
Let us now consider the equations of evolution for the
basic macrovariables of E¢L0), which are consistently de- Where n&™ stands for a column vector with components
rived in the MaxEnt-NESOM-based nonlinear quantum ki-ngg’(t) with fixed Q, and ®*" stands for column vectors
netic theory[20]. Formally, these are Heisenberg equationswith components
of motion for the basic dynamical variables averaged over
the nonequilibrium ensemble, which can be written in terms e o 1 R
of collision operator$20]. We restrict the calculations to the Pio=- mEankQJr EV(Q)Man(Q't)
Markovian limit [41], that is a satisfactory approach in this
case of weak coupling42]. This can be considered as a — A (Do) + Al (D NRg(1) + Rig(t) + NEo (1),
far-reaching generalization of Mori-Heisenberg-Langevin 213
equationg43], and we recall that the Markovian approxima-
tion implies in retaining binary collisions only. 1 1
The equation of evolution for the carriers’ energy is (DEQ: - EEEQnEQ_ 7V(Q)AfEQn(Q,t)

d
GrEM=IF O+, (15 = Alg(HNkg() + Af(H)ngo(t) + Rig(t) + Nigg (1),

(21b
where
) where)(Q) is the matrix element of the Coulomb interac-
™ tion between carriers, and we have introduced the quantities
I (0= 2 Lel (@) 2T 1l D a
EXe = €k 10~ €k hig (223
— TR 12(D)]18(hw— €4 1ot €k 1720 (16) © TR *
AT =150 o= F50) (22b)
corresponds to the rate of energy pumped by the external kQ T 'k+12Q07 'k-1/2Q-

source, and where we have used a spectral representation in ) ) _ o
the form In the quasi-one-dimensional systésay, a wirelike cyl-

inder with radiusR) the matrix element of Coulomb interac-
: » do . tion in Egs. (21) is given by V(Q)=(2e%e,L)K(QR),
(eupilt)= fﬁw7|x(‘“)e : (17) with K, being the Bessel function of order zero. The contri-
butions Rﬁ‘Q correspond to the carrier-phonon interaction,
Moreover, and\o(t) are bilinear contributions ing, , with a=e or h;
for simplicity we omit writing down the cumbersome expres-

2 sions for these two contributions, since they are not going to
)4y = I(a))2 _ e .
JeL ()= 7 qu;l Ea: Vi I*Ceks ar2q— €k 1120) be used explicitly in what follows. Finally,
Xl (D1~ iy (D] [14 v54] Ak =I\G' Pl o(Exg/h) (23
_fa a
X[ = Fic (D] 72(D} is the contribution arising out of the coupling with the exter-
X &( eﬁﬂ,zq— fﬁfl/m—ﬁqu) (18) Ezl ?i)%rceAQa is introduced in Eq(6), andl g is defined in

is the rate of energy exchange between the carriers and the In the absence of the sourck,&0), Egs.(19) and(20)
lattice, wherea=e or h for electron or hole, respectively. We describe the different kinds of mechanical moti¢B8] av-
recall thaty stands for the index of the different branches oferaged over thequilibrium state when the nonlinear terms
phonons and for the different types of carrier-phonon inter- can be neglected.e., takingNﬁ‘Q:O, since the amplitudes
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are very smajl They correspond to the single-particle exci- “sufficient distance” from the Onsagerian regime has been
tations with the excitation spectrum given by the Bohr fre-achieved, it is characterized by=0 at this critical intensity.

quencies Then, takingy=0 in Eg. (27) and introducing the resulting
a a a a expression in the linear part of EqR1), we find for each
W= (€1 1120~ €k—1120)/ A =Eiol T, (24 componenhﬁ‘Q(t) that

and two types—for this double component plasma—of col-

e _ e e fe _te —
lective excitations consisting in the so-callegper and honq=hoQne™ N ey~ f-12IN(Q)

Iowe.r plasme} wavesgplasmong, with, respectively, the dis- +ih Ag WEQ— i% Ag 77EQ1 (284
persion relations
JIn(QR)[ honig=—fhwggmiot QM1 fi-y2lMQ)
0 (Q)=£.QV|In(QR)|, (25) kQ kQ 77kQ k+120 " Tk—120
+ihAY Mo — 1A LG | 28h
w-(Q)=§-Q, (26) Q"7kQ Q7kQ (28b)

where the electron-phonon contributior@? in Egs. (21),

for the quasi-one-dimensional systdin the case of bulk have been neglected. In Eq28) we have introduced the
samples they correspond to the so-called optical and acoUginction

tical branches of plasma wave excitatiprs Eqgs.(25) and

(26) g_i are constants with dimension of velocity. The ex- _Izj:[lJreXp[B[eE_ wall 7L, (29)
pressions of Eq924)—(26) correspond to the frequencies of

possible oscillation in the system, but the motion is of courseyith g=1/kgT,, u, being the chemical potentials at tem-
dampened because of the interaction with the lattice vibraperatureT, and densities\, andn;,, and

tions, an effect carried on by the terRsin the equations of

evolution. We recall that the collective excitations are a re- — h

sult of the presence of Coulomb interaction in the term con- n(Q)= ; (7@ MQ)- (30
taining V(Q).

Let us consider the steady state that sets in—after a rapid We notice that in the usual conditions, i.€5=300 K and
transient has elapsed—when the system is kept under thg, of the order or smaller than i@m™ 2, the populations in
constant action of the external source. The homogeneoule homogeneous steady state of E2P) can be approxi-
steady state is characterized by the constant-in-time variablesated by
E., ne, Ny, and E_. In the steady state we have that 5
dE./dt=0 in Eqg.(15), meaning a balance between the rate . 2mh
of pumped energyEq. (16)] and the rate of energy relaxed k mikgTo
to the phonons$Eq. (18)]. Except at very high levels of ex-
citation, the phonons can maintain the global carrier’s energan expression resembling a Maxwell-Boltzmann distribution
in equilibrium at a quasitemperatufié ~T,. at temperaturd 3 and concentrations, andny, for a quasi-

We proceed next to analyze the behavior of variabfgs one-dimensional system. _

(a=e or h), that are null in the homogeneous steady state, Having fixed y=0 we now look for the eigenvalues
looking for the possible instability of this stationary state =i, Which are the roots of the characteristic equations ob-
against the formation of a spatial pattern, i.e., wh@g can tained after we add both Eq8) and next sum ovek, i.e.,
become different from zero in steady conditions. For that = _

. o . n ,w)=0, 32
purpose we use standard linear stability analysis, and we test (Qe(Q.w) (32
the evolution oanQ after imposing an arbitrary small per- where
turbation of the form

1/2
) naexp{ — ep/kegTo}, (32)

jl(k!Q!w)+ij2(le!w)

a a =1 —
o= 7iee @n Qo= VQ% R oo ik Qe
where 7 is an arbitrary infinitesimal amplitude andis the :
i with

complex numbei =iw— vy, wherey and o are real num-
bers. Since the amplitudes for the inhomogeneities are null in j1(k,Q 0)=—AfSg(hw— EEQ)
the homogeneous state, the quantitlég,(t) in Egs. (21)
can be neglected since they are bilinear in the amplituges +Aflo(ho—Efy), (343

At low intensities of the pumping source the quantjtis
positive, the perturbation of E¢27) only regresses, and the j2(k,Q,w)=(AfﬁQ—AfEQ)(AEQ+AEQ), (34b)
homogeneous stationary state remains stable. This is the so-
called thermally chaotic regime corresponding to the linear j3(k,Q,w)=(hw—EEQ)(ﬁw+ EEQ), (340
regime around equilibrium where Prigogine’s theorem of
minimum entropy productiofi6] excludes the possibility of ja(k,Q,w)=—(ho+ EEQ)AEQ
emergence of complex behavior. If an instability arises at a
sufficient high intensity of the pumping source, i.e., when a —(ho—Ejg)Ak- (349
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Equation(32) has two solutions; one i8(Q)=0 which  where M’ (k,Q) and D(k,Q) are the quantities defined in
corresponds to the homogeneous statih n,,=0) and a  Egs.(378 and (370, respectively, but evaluated in=0.
second one, fon(Q) # 0, that corresponds to the emergence Therefore, if such root exists for a givép at a valueQ
of a spatiotemporal ordering, i.e., =Q., the homogeneous steady state becomes unstable

against the emergence of a structure of the form

e(Quw)=¢'(Qw)+ie"(Q w)=0, (35
which requires that both the reat’() and imaginary £") n(z)=n,—nNe+ }{[nh(Qc)_"ne(Qc)]eiQCZ,"i_C-C-}
parts are zero, i.e., 2
(39
, M'(k,Q,w) N . .
€ (Q,w)=l—V(Q); W:O’ (368  (in units of the electronic chargs, wheren,>n.. This is a

steady-state charge-density wave of wavelengthQ@. run-
M (K ) ning in the direction of thez axis of the quasi-one-
e"(Q,0)=—-WVQ)> &:o’ (36  dimensional system, which is superimposed on the homoge-

D(k,Q,w) neous background with densityn,. At this point
, (characterized by, andQ.) we have a bifurcation point of
with solutions, with the solution describing the emergence of the
, . . spatial pattern separating out from the so-called thermody-
Mk, Q 0)=]1(k,Q 0)j5(k, Q@) namic solution corresponding to the homogeneous steady
+j,(k,Q,0)jak,Q,w), (378  state. This is a first bifurcation point: we can think of it as a
kind of fork bifurcation, where the branches corresponding
M'"(K,Q,0)=]»(Kk,Q,0)j3(k,Q,w) to the ordered state, characterized by the amplitnd@.)|,
) ] emerges from the so-called thermodynamic branci{Q)
—J1(k,Q,w)j4(k,Q,®), (879 |=0) at the critical intensity =1,. Moreover, we anticipate

i i that the firstQ. corresponds to the limit of very long wave-
D(k,Q,0)=[j3(k,Q ) *+[ja(k,Q@)]% (870  |engths, i.e.Q, going to zero.
The charge-density wave of E(B9) is a static(or “fro-
zen”) plasma wave, a kind of soft mode that is in the origin
of ferroelectricity, antiferroelectricity, and helielectricity in

diff i " is Al _dielectrics(a “frozen” vibrational mode. Therefore, we can
quencyo different from zerdmoreoverwe” is always posi- consider the emerging structure as a helielectric state or a

tive except forw=0 where it is null. This is a result of deep  yjyen electret state in a biosystem, i.e., a bioele¢@gt.
physical meaning: in fact, the quantigfQ, ») is the wave- In this case we have an interesting example of emergence
vector- and frequency-dependent dielectric functithe o 5 gissipative structure in Nicolis and Prigogine’s sense
electronic contributionof the system. Then this quantity has [4—6]: Coulomb interaction producing collective modéise
several physical properties, in particular, the prOdUCtplasmons of the microscopic dynamiand dissipative ef-
we"(Q,w) is the absorption coefficient of eIectromagneticfectS(of macroscopic thermohydrodynamic kineligsoduc-
radiation[45], which is always positive and null only fab 4 thermal disorganization are involved in a “tug of war”
=0. The roots of the real part provide the dispersion relationgyards the production of a macroscopic ordered structure.
® VS Q of. the .eIementary_ excitations in the carrier’s fluid p¢ |ow pumping intensities, when the system is near equilib-
[44]. The imaginary part times the frequency has a peak &f,m (the so-called strictly linear regime of nonequilibrium
the points where the real part is zero; this reflects the fact thalhermodynamic)s morphological ordering cannot be ex-
the real and the imaginary parts are not independent, biacted because of Prigogine’s theorem of minimum entropy
related by the so-called Kramers—Kig relations [45],  production, as it has already been noted. Only in conditions
which are a consequence of the principle of causality. Conggficiently away from equilibrium are the nonlinear contri-
sequently, there are no solutions of E82) for frequencies  ptions capable to work against the tendency to disaister
different than zero and, then, a complex behavior in time, aBjlizing a homogeneous stateeading to the emergence of

a limit cycle, for instance, cannot be expected. Therefore, thg,,croscopic ordering; this is discussed in detail in the fol-
system of mobile carriers in the lattice background is Stab'%wing section.

against time-dependent fluctuations.

However, in the static casenE=0), the imaginary part of
the dielectric function is identically zero for an®, i.e.,
€"(Q,0)=0. Therefore, a stationary spatial ordering can fol- Before proceeding further, two points have to be taken

low for a critical value of the intensity; of the pumping  into account: one is thad is not a continuous wave number,
source if the real part of the dielectric function becomes zergyyt takes discrete values because the sample is finite in

An analysis of Eqs(36) shows that’ is an even function
of w while &” is an odd function, and it can be shown that
there isnot a simultaneous solution of the system fofrex

IlI. COMPLEX SPATIAL PATTERN

for certainQ, i.e., length. Because of boundary conditidtise wave amplitude
K is zero at the bordershe possible wave vectors are given by
/ —1_ M'(k,Q) — Q=/m/L, where/ is an integer {=1,2,3,...,) and. is the
' (Q0=1-VQX 0, (39 12:3,...0) |
k D(k,Q) length of the sample. The second point is t@ais bounded
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between its lowest possible valugL and an upper value

/' wlL, because) must be smaller or at most equal to the 200 20

Brillouin radiusQg= =/a; then/, is the integer part of /a =

(if we takeL=1 cm anda=100 A, then/,=10°). £ 1™
Furthermore, once the first bifurcation poini ghas been

reached, for increasing pumping intensity beyopdi.e., for & %7 1'%

I>1., we would need to analyze(Q,0) after the inhomo- & A

geneous state has set in a steady-state condition. This implie5 7 ' 4 A 1%

a return to Eqs(21) and to include the nonlinear terme. § y A,

However, since the amplitudes,(Q.) contribute quadrati- o ° 0

cally to £(Q,0) and are very small in the neighborhood of & 1

the critical point, we can neglect these terms in a first ap-§ 501 1°°

proximation. Thus, we analyze, for-1., the real part ofthe 3

dielectric function as given by E¢38). 100 4——rrrrrry . +100

10° 10' 10° 10° 10

We illustrate these results using number characteristics of P
WAVE NUMBER (cm™)

an a-helix structure in proteinf23]. We takea~ 100 A, and
~ -1 i i i

tr;enO?B ;'14%:1]'06 i]nl] ’handnh will be. ﬂxe(: ";] thehrange” FIG. 1. The real part of the static dielectric function depending

0 1 —10° cm » W lle the Con,cemrat'or,] ot the thermally on wave number, for several values of the coupling strength,

excited electrons in the conduction band is much smaller; the. 1 5-18 A,=10", A,=10"16 A,=10 erg. The roots are

hole temperature is fixed at 300 K. For the electron and hol@jearly evidenced, as well as the region where it becomes negative.
energy dispersion relation we use a parabolic law of the form

1 mum possible value dD, namely,Q.= 7/L; in this case, the
sL‘(e)=§Fh(e)azk2, (400  critical value ofA is A;~10"2° erg for a lengthL~1 cm.

Let us now consider the neighborhood of the first bifur-
cation atA; andQ. . For that purpose we need to obtain the
dielectric function in the state, and carry out stability analy-
sis of the first bifurcating branch. For weak-to-moderate in-
tensity abovd ., such that we can neglect in a first approxi-

wherel'y, ) is a constant with dimension of energy. In the
calculations we take the continuous limit fiermeaning that
the summation ovek is transformed into an integration of

the form i . oo . S
mation the bilinear contributiondeading to mode mixing
L (la the analysis proceeds as in Sec. Il above. The homogeneous
; “om) dk. (41)  and steady state of reference is functionally stable, and an
—la

instability follows in the presence of additional inhomoge-
neous fluctuations. Figure 1 shows the real part of the dielec-
tric function for several values oA. We see that, withA
increasing beyond\;, the dielectric function vanishes for
values ofQ larger thanQ.= /L. If for a givenA the roots

of €’ occurs at wave-vecto®,=1=/L, then the instabilities

of the homogeneous state follow against sinusoidal waves
with wave numbersw/L,27/L,... |7/L. Therefore, these
modes are contributing to compose the spatial charge density
in the system, leading to a structure of the form

Finally, the coupling constanl;sEQ and AEQ of Eq. (23
are taken as independentloindQ and equal to each other
without loss of generality A= Afo=A).

Because of the singularity in the potenti¥lQ) whenQ
goes to zero, one expects a first root of E8Q) for very
small values ofQ (say the minimum possible valug/L).
After performing an expansion of the right-hand sides) of
Egs. (37) in powers ofQ aroundQ=0, we obtain the ap-
proximate expressions

n=I
- n(z)=nh+nz1 [np(na/L)e'"™V24 ¢ c]+ny (2),
—pat(k-QPTETa(fi+ ), (42 (44)

M’ (k,Q)=2A%B(T =T f&)(To—T})

D(k'Q):AZ(Fe_Fh)2+a4(k'Q)ZFEFZ' (43 once we disregard the contribution of the dilute gas of
— — ) , , electron-type carriers, and wheng, (z) contains additional
wherefy andf, are the populations given in E(B1). terms involving mode mixing, arising out of the nonlinear
For Eq.(38) to have a root it is necessary that the secondtoypling terms. However, in conditions leading to the emer-
term in Eq.(42) be negative. As a rul€ of the condugtlon gence of only small amplitudes,(Q) (weak-to-moderate
band is larger thail", of the valence band and, then, it must pymping intensities the linear terms would predominate.
be verified thaTh?E> I'.f¢, which requires that the concen- This suggests that, with increasing intensiggbove the criti-
trationn, must be larger than, . This is the case in proteins, cal intensity |. (corresponding to the first bifurcatipna
which arep doped, for a sufficiently large value é&fwhich  charge-density wave composed of a large number of normal
incorporates the intensitly of the sourcdcf. Eq. (23)]. For  modes will emerge in the system.
=0 (then A=0) no zero ofe'(Q,0) is possible. As the Figure 2 shows the dependence of the critical wave num-
intensity | increases, the first instability occurs at the mini- bers with the coupling intensith for three different values
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ishes; therefore, sind@= —4x7M, a spontaneous ferromag-
netizationM # 0 must emerg¢46].

Consider now the case of nonequilibrium systems arbi-
trarily away from equilibrium. We can introduce ideas that
have a close analogy with the case of phase transitions, but
keeping in mind that the role of phases in equilibrium is now
played by the stationary dissipative structure. For the carri-
ers’ system described here, since the electric fiel&(i®)
=& 1(Q,0)D(Q), whene ! goes to infinity the electric dis-
placement vectoD(Q) must be zero. Therefore, the relation
D(Q)=E(Q)+4xP(Q) implies in the emergence of a spon-
taneous and space-dependent electric polarizaRet0,
namely, the charge-density wave we have evidenced. This is
similar to the case of electrical polarizable phase transitions
in equilibrium, with Q=0 for ferroelectrics,|Q|=w/a for
antiferroelectricga is the lattice parameter in the direction of
Q), and arbitraryQ for helical-electrical materials.

After the first and following bifurcations have occurred,
the spatially ordered state consists of a complicated structure,
containing the linear superposition of modes as in @4)
plus nonlinear contribution@ot shown. This leads us to the
prediction of a particular asymptotic phenomenon where the
growing number of normal moddsvith ever increasing),
interacting together to compose the local densityfz),
would lead to an excess of modes in the system. It is worth
noting the analogy with Landau’s theory of turbulerjd&],
but with the difference that in the latter case there is an
overexcess of frequency-dependent oscillatiges it is a
time-dependent problemwhile here there is an overexcess

FIG. 2. Linear stability diagram associated with bifurcations of of steady-state space-varying modés space-dependent
the homogeneous and steady-state solutions, for three values of theoblem).

hole density(in cm™). First instability occurs in the limiQ—0,

where the minimum of the marginal stability is located.

of the hole concentration; the range of valuesQo€ontrib-

IV. THERMODYNAMIC ANALYSIS OF THE
MORPHOLOGICAL TRANSITION

uting to the formation of the spatial structure increases with Given initial conditions the complete evolution of the
increasing doping, but in all cases tends to a limiting valuenonequilibrium-dissipative macroscopic state of the system

We end this section with considerations of a general charis determined by solving Eq§19) and(20). The initial con-
acter. First we notice that, from the physical point of view, ditions in this case refer to the initial preparation of the sys-
the bifurcation point corresponds to a zero of the static difem near or far away from equilibrium.

electric function for a certain wave number. Therefore, for

The dissipative character of the set of equations is re-

those wave numbers the so-called dielectric response funélected in that, when embedding the equations of evolution
tion £ “1(Q,0) becomes infinite, indicating an instability of into the space of the nonequilibrium thermodynamic space
the homogeneous charge density against the formation of gi¢fined by the set of variables of E30), a contraction of an
organized structure. This has a Comp|ete ana|ogy with th@lement of volume is obtained, each point of which follows
criteria of phase transitions in equilibrium. In fact, in the the evolution laws. This very important property can be ex-
latter case, the criticdbr transition point is characterized by ~Pressed by an inequalif$8,49, which in the present case is

a singularity in a particular physical property, for example,diven by

an infinite value of the specific heat in changes of structure,
an infinite value of the magnetic susceptibility in a ferromag-
netic transition, etc. In the first case just mentione we have
AQ=CAT, by definition of the specific he&, whereAQ

dt’ div >, ®*(Q,t’)<0,
a

is the heat provided to the sample and the change in Wwhere

temperature. In this cage goes to infinity in the transition

point and, sinceAQ is finite, the temperature remains con-
stant as the transition proceeds. In the second case mentioned

o
SNio(t)

divg (I)a(Q,t’)zg ;

Din(t),  (46)

above, the magnetic displacement vector and magnetic field
are related byB= «H and then as the magnetic permeability and § stands for functional derivativis0]. Using Eqgs.(21)
p goes to infinity, the magnetic displacement vector van-we obtain that
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In Eqgs. (47) the contributions frontR and A have been

disregarded sincgV is quadratic in the amplitudes and the

effect of the phonons irR is small when compared to the
magnitude ofA, which is proportional to the source intensity.
Next, summing Eq947) overk, and using Eq(46) we have

div«pa(Q,t):—Zk AL, . (48)

Since the coefficient8 are positive, the divergence in Eq.

(48) is negative and, then, the quantity within the integral in

Eq. (45) is always negative and the inequality is verified.

To study the thermodynamical aspects of the problem w

introduce the informational entropy in MaxEnt-NESOM-
based IST10-13, in this case given by

S(t)=—Tr{e,()3(t,0}= ¢<t>+§u+k§a Feo(hnio(1).
(49

In Eq. (49), we have separated out the contributions from the

PHYSICAL REVIEW E55 041914
We can now study the contribution of the morphological

transition to the informational entropy in IST. This is done in
terms of the quantity

AS S-S
O=—= $_
SSS Sgs

_ Fa(ss)na(ss):_ M2 Fa(SS)2
%a kQ "'kQ %a I<Q| le

= —%a [Mio] Hngse2, (53)

obtained after using Eq51). In Eq. (53 g(s)s is the informa-
tional entropy of the homogeneous state in the absence of the

nonhomogeneous contribution, whi®is the informational
entropy in the presence of the spatial ordering, both taken in
the steady state.

The quantityQ plays the role of a Kullback-like order
parametef52], which is a positive quantity sindd is nega-
tive for nonzeronEQ [9f/de<0 in Eq. (52), because the

gopulations decrease with increasing energi€his implies

that S<S,, indicating that the informational entropy de-

creases as the amplitude of the charge-density wave in-

creases with increasing intensity beyond the critical value.
Let us consider the immediate neighborhood of the first

bifurcation. Using Egs(28) in the steady statéss, i.e.,

=0, we obtain a linear relation between the individual am-

plitudesnék‘Q and the wave amplitude?(Q), namely,

a(sy__~a pna(sy
homogeneous par§, (corresponding to the variablds,, Mg =Cigh™(Q), ®4
Ny, Ny, andgy), from those of the inhomogeneous p@or-  \here
responding to the amplitude@Q).
First let us calculate the average values of the quantities a(s9/ a(ss
Afg in terms of their associated multiplielg,(t), that is, Nk (Q)_Ek: NkQ (59
Nig(D) =Tr{Agge. (O} =Tr{fAgge ()}, (50) 2 _Ta

Clo=VQY m————2 (50

which are calculated using Heims-Jaynes perturbation ex- Q K €xr120” Ek-120T 1AKQ

pansion for averagd®l]; in a linear approximationin the
Lagrange multipliers=,o we obtain

with
. Ay QVifig  Q-Vie dfig
‘OUBEY, BQ-Vier BQ-Vie defg
afd
_ * Q
kgT? s (52

calculated in the limit of smalQ. Equation(52) is time

independent because of the assumed stationary characterﬁg

the homogeneous state, i.8.andu are constant in time. We
recall tha_tFﬁQ(t) = BS(t)/énEQ(t) which, along with the re-
lations 6S(t)/ SE.= B and 6S(t)/ SN= — Bu, constitute the
nonequilibrium equations of state in IST.

Using these results, after some algebra we find that

— | 1/2
AS=G(Q)|n*(Q)|?~ |——1 : (57)
once we takéAjo=A=\I [cf. Eq.(23)], and where
G(Q)=-2 MiglCiql”, (58)
n%(Q) =2 n**3(Q). (59)

Equation (57) implies that, in the immediate neighbor-
od of the first bifurcation, the order parameferof Eqg.

(53 increases with the pumping intensity following a
square-root law. This result has a strong resemblance with
the square-root law for the order parameter in Landau’s
theory of second-order phase transitig46].
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We consider next the global informational-entropy pro-multipliers (or intensive nonequilibrium thermodynamic
duction in IST, which gives relevant information on the dis- variable$, which is given in this case by
sipative behavior of the system. This nonequilibrium thermo-
ic function is gi deo(t
dynamic function is given by FU( ) %a dtnkQ(t)
d— d d
a(t)= = S(t)= =Sy + 2 Fig(t) 7-nig(t)
dt dt QW dt K d
s =2 Miqal” 1dtnkQ<t>anﬁQ<t>

=S FR ()R (1), 60 :
%a k(D Pio(t) (60) :;%:a[MkQa] Ydd(1)[2, 64)

where we have used thdS,(t)/dt=0 along with Eqs(19) o
and (20), and then it depends almost exclusively on the in-2nd () the rate of change due to the change in time of the
macrovariables, that is,

homogeneous variables. The informational-entropy produc-
tion can be decomposed in two terms in the form

doa(t) o2
—_— L — => Fay(t) =z N
a(t)=oiH+ o, (62) dt oa I(Q()dt kQ

whereo ;) is the internal contribution, which results from the
internal interactions in the system, angl, is the external
contribution, due to interactions with the surrounding. We
note that in the limiting case when the theory describes the The quantity of Eq(64) is negativg M <0; cf. Eq.(52)],
restricted classical irreversible thermodynamieen local  as it should, since this result is a manifestation of the theo-
equilibrium is assumed the quantityo ;) becomes simply rem of evolution in IST[12], a generalization of the thermo-
the entropy production. In equilibrium and in local equilib- dynamic principle of evolution of Glansdorff-Prigogine
rium, the informational entropy coincides with the definition [6,53]. This principle states that along the trajectories in the
given by Clausius. In the linear domain of irreversible ther-thermodynamic space of states, governed by the MaxEnt-
modynamics the theorem of minimum entropy productionNESOM kinetic equationfEgs.(19) and(20) in the present
excludes the possibility of macroscopic orderifigis the  casd, the rate of change in time of the informational-entropy
domain of the thermal chapsas already pointed out, com- production resulting from the rate of change of the Lagrange
plexity of the type described here, requires nonlinear contrimultipliers must be a negative quantity.
butions in the kinetic equations and an accompanying break- We turn now to the question of the stability of the charge-
ing of Onsager’'s symmetry relatiop$1,12,. density wave. Linear stability analysis in Lyapunov style is
Considering the steady state, wher€=0 and thenz_r(sf) the mathematical way, but an alternative and equivalent ap-
= _U?:) and using Egs(51) and (54), we can write the Pproach with p_hysi(_:al meaning i§ tlﬁm)stability criterion in
different contributions in the form IST [12], which is a generalization of the Glansdorff-
Prigogine criterion[6,53] in nonlinear classical thermody-

_ d
ZKEQa[MkQa] "Nog; Pho)- (69

e 1 ) .a a a 1208 5 namics. It stat_es thatgsolutioﬁstructure is stqble v_vhen two
Um:@%a IVQ)|*(TR+ 1720~ Fi+ 120) | Cigl T Q) |, thermodynamic functions have the opposite sign: One of
(62) these functions i$S, which, after using Eq949) and(51),
is given by

—{s9 _ A ss 1-1|ca |2|ps 2. 63 o
kQa

If we changeQ by —Q and note thaCk,,Q=C’k‘Q and
My, —o=Mjq (asterisks indicate complex conjugatee ob-
tain that botho's in Egs. (62) and (63) are real quantities.
Furthermore, the external production of informational e
tropy is negativg M <0; cf. Eq.(52)], meaning that infor-
mational entropy is pumped out of the system, while the s ss
internal contribution is positive, which can be considered a (s9 _ o°S (67)
manifestation of the second law of thermodynamics. We re- kQa 52n§Q
call that the informational entropy in IST satisfies7drtheo-
rem, that we have called a weak principle of increase of The positiveness of the rhs E@6) is a consequence that
informational-statistical entropjyl1-13. it is a manifestation of the curvature of the informational

Two other important nonequilibrium thermodynamic entropy in the steady state, which is a maximum because of
functions are:(a) the rate of change of the informational- MaxEnt. The quantity defined in Eq67) is the change in
entropy production due to the change in time of the Lagrangéme of the informational entropy, namely,

where én stands for an arbitrary small change in the basic
variable ni, from its value in the steady state. The other

n- _quantity is the second functional derivative of the informa-
tional entropy taken in the steady state, i.e.,
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| o

1 d waves(kind of “frozen” plasmong. In the interplay between

t§53(t)=%a C%sﬁw%(mz the organizing Coulomb interaction and dissipative effects
working to lead the system to disorganized thermal chaos,
d the former overcomes the latter at a certain threshold of in-
5nﬁQ(t)aén§5(t) tensity of the external pumping source. This happens when

the system is sufficiently far from equilibrium and nonlinear

d effects become strong enough compared with relaxat@n
+ oG (0 5 5”&3('0} sipative effects.

In Sec. IV, we have described some properties of this

=3 A . ax A _dynamical system, I_ike t_he contraction of a_volume elem_ent

= %a Craal Ny (1) Do (t) + 0Ny (1) Do ()] in the thermodynamic Gibbs space, each point of it following
the equations of evolution, what evidences the overall dissi-

(&3 an a 5 pative character of thg dyngmics. We notice that. only part of

= _k%:a CloaAkal ONig(D[?, (68)  the pumped energy is redirected to the formation of order
instead of being wasted out in thermal motion. Moreover, the

once we use the equations of evolution, E4®) and(20),  morphological transition has been characterized by an order
after neglecting the terms witiR and A, and taking into ~Parametefcf. Eq. (53)], which has the interesting property

account thad nEQ/dt:d(nﬁgss)Jr ond)/dt=dsniy/dt. The ~ gvenin Eq.(57), which resembles the behavior of the order
quantity defined in Eq(68) is also negative, and then, ac- parameter in Landau’s thepry of second-order phase transi-
cording to the(in)stability theorem, the organized state of iOns. This is expected since we have used a mean-field

charge density waves is stable with respect to the homogdl€Ory in & many-body system. _
neous stationary state. Nonequilibrium thermodynamic properties have also been

Note that the quantity of Eq68) is the so-called excess considered, as the production of informational-statistical en-

entropy production function, which measures the differencdf©PY, and its separation in internal and external contribu-
between the informational-entropy production in the dis-tions. Thg principle of evolution has bgen also verified, and
placed state, byn, and that in the steady state. the stability of the ordered space against the homogeneous
state. The internal production of informational-statistical en-
tropy is positive, which is a manifestation of &htheorem,
further reinforcing the dissipative character of the equations

We have evidenced the possible emergence of morph®f evolution.
logical ordering in the form of static charge-density waves in As final words, we recall A. Szent-Gygyi and
the carrier’s system of biopolymers, as #elix secondary McLaughlin’s arguments that organization of electrdas
structure in proteins. This is a kind of dissipative structure inmobile carriersin living matter may have biological conse-
Prigogine’s sense, which is only possible in systems govquences. The present paper has stressed that such ordering is
erned by nonlinear kinetic equations and when driven suffipossible as a result of biological systems being open systems
ciently far from equilibrium, outside the linear regime of working in far-from-equilibrium conditions.
classical thermodynamics. Ordered states in the latter regime
are excluded because of Prigogine’s theorem of minimum
entropy production. Self-organization can only arise when
Onsager’s reciprocal relatiorgstrictly valid in the linear re- We acknowledge financial support provided to our re-
gime around equilibriunnare violated, what is possible only search group on different occasions by the Staté offSaulo
in the nonlinear domain. Research FoundatiofFAPESB, the National Research

In the present case the spatial organization is a consesouncil (CNPq, the Ministry of PlanningFinep, Unicamp
quence of the organizing effects forced by Coulomb interacFoundation (FAEP), IBM-Brasil, and the John Simon
tion between the carriers, responsible for their collective moGuggenheim Memorial FoundatidiNew York). S.A.H. ac-
tion in the form of plasma waves. We can say that theknowledges Professor Harel Weinstein of the Department of
emergence of the organized static charge-density waves isRhysiology and Biophysics at Mount Sinai School of Medi-
consequence of the formation of steady states of plasmeine for useful comments.

o
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V. CONCLUSIONS

ACKNOWLEDGMENTS

[1] P. W. Anderson, SciencE77, 393(1972. [6] G. Nicolis and I. PrigogineSelf-Organization in Nonequilib-
[2] P. W. Anderson, Phys. Todad4(7), 9 (1991). rium SystemgWiley-Interscience, New York, 1977
[3] M. Gell-Mann, Complexityl, 16 (1995. [7] A. M. Turing, Philos. Trans. R. Soc. London, Ser.2B2, 37
[4] I. Prigogine, inFrom Theoretical Physics to Biologgdited by (1952.

M. Marois (North-Holland, Amsterdam, 1969 [8] G. Nicolis, Physica A213 1 (1995.
[5] G. Nicolis and 1. PrigogineExploring Complexity(Freeman, [9] A. Hobson, J. Chem. Phyd5, 1352(1966.

New York, 1989. [10] L. S. Garca-Coln, A. R. Vasconcellos, and R. Luzzi, J. Non-

041914-10



MORPHOLOGICAL ORDERING IN BIOPOLYMERS. . . PHYSICAL REVIEW E 65041914

Equilib. Thermodyn19, 24 (1994. [32] N. W. Aschroft and N. D. MerminSolid State PhysicéHolt,
[11] R. Luzzi, A. R. Vasconcellos, and J. G. Ram@&atistical Reinhart, and Winston, New York, 1976
Foundations of Irreversible Thermodynamic¢Teubner  [33] D. Pines and P. Noziere§he Theory of Quantum Liquids
Bertelsmann-Springer, Stuttgart, 2000 (Benjamin, New York, 1966
[12] M. A. Tenan, A. R. Vasconcellos, and R. Luzzi, Fortschr. Phys.[34] A. R. Vasconcellos, A. C. Algarte, and R. Luzzi, Physica A
45,1 (1997. 166, 517(1990.
[13] R. Luzzi, A. R. Vasconcellos, and J. G. Ramos, Fortschr. PhysE35] A. C. Algarte, A. R. Vasconcellos, and R. Luzzi, Phys. Status
47, 401 (1999. Solidi B 173 487 (1992.

[14] D. N. Zubarev, Neravnovesnaia Statisticheskaia Termodi- [36] A. R. Vasconcellos, A. C. Algarte, and R. Luzzi, Phys. Rev. B
namika(lzd. Nauka, Moscow, 193 Nonequilibrium Statisti- 48, 10873(1995 ' ' '

cal ThermodynamicéConsultants Bureau, New York, 1974 [37] S. Hassan, A. R. Vasconcellos, and R. Luzzi, Physic263
[15] D. N. Zubarev, V. N. Morozov, and G. Ré&e, Statistical Me- 359 (1999' T ' ' '

chanics of Nonequilibrium Processes. Vol. 1: Basic Concepts . .
! quitibri ' P [38] R. Luzzi, A. R. Vasconcellos, and J. G. Ramaspublishe

Kinetic Theory; Vol. 2: Relaxation and Hydrodynamic Pro- o ) ]
cesse¢Akademie Verlag-Wiley VCH, Berlin, 1996 e-print in URL: http://xxx.lanl.gov/abs/cond-mat/9909160.

[16] R. Luzzi and A. R. Vasconcellos, Fortschr. Phag, 887 [39] R. Luzzi, A. R. Vasconcellos, J. Casas-Vazquez, and D. Jou,

(1990. Physica A234, 699 (1997.

[17] J. G. Ramos, A. R. Vasconcellos, and R. Luzzi, Fortschr. Physl40] R. Luzzi, A. R. Vasconcellos, J. Casas-Vazquez, and D. Jou, J.
43, 265 (1993. Chem. PhySlO7, 7383(1997).

[18] E. T. Jaynes, articles and notes Eh T. Jaynes Papers on [41] J. R. Madureira, A. R. Vasconcellos, R. Luzzi, and L. Lauck,
Probability, Statistics, and Statistical Physjeslited by R. D. Phys. Rev. E57, 3637(1998.

RosenkrantZReidel, Dordrecht, 1983 [42] E. B. Davies, Commun. Math. Phy34, 91 (1974).

[19] A. I. Akhiezer and S. V. Peletminskilylethods of Statistical [43] J. R. Madureira, A. R. Vasconcellos, R. Luzzi, J. Casas-
Physics(Pergamon, Oxford, 1981 Vazquez, and D. Jou, J. Chem. Ph¥88 7568(1998.

[20] L. Lauck, A. R. Vasconcellos, and R. Luzzi, PhysicalB8 [44] D. Pines, Elementary Excitations in Solids: Lectures on
789 (1990. Phonons, Electrons and PlasmoriBenjamin, New York,

[21] R. Luzzi and A. R. Vasconcellos, Complexi®y 42 (1997. 1964.

[22] S. A. Hassan, A. R. Vasconcellos, and R. Luzzi, Eur. Phys. J[45] L. D. Landau and E. M. LifshitzElectrodynamics of Continu-
B. 13, 131(2000. ous Media(Pergamon, Oxford, 1960

[23] A. S. Davydov,Biology and Quantum Mechani¢®ergamon, [46] H. E. Stanley,Introduction to Phase Transition and Critical
Oxford, 1982. PhenomendClarendon, Oxford, 1971

[24] A. J. Heger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Rev[47] L. D. Landau, Dokl. Akad. Nauki4, 339(1936; also inCol-
Mod. Phys.60, 781(1988. lected Papers of L. D. Landaedited by D. ter Haa(Gordon

[25] A. R. Vasconcellos, M. V. Mesquita, and R. Luzzi, Phys. Rev. and Breach, New York, 1965
Lett. 80, 2008(1998. [48] G. Nicolis, Introduction to Nonlinear Sciend€ambridge Uni-

[26] R. Pethig, Int. J. Quantum Chem., Quantum Biol. SyrBp. versity Press, Cambridge, 1995
385(1978. [49] G. Nicolis and D. Daems, Cha@& 311(1998.

[27] See, for exampleChemical and Biological Generation of Ex- [50] R. Courant and D. Hilbertiethods of Mathematical Physics
cited Statesedited by W. Adam and G. Cilent@Academic, (Wiley-Interscience, New York, 1953Vol. |, pp. 184—-186.
New York, 1982. [51] S. P. Heims and E. T. Jaynes, Rev. Mod. PI3y5.143(1962);

[28] A. Szent-Gyogyi and J. A. McLaughlin, Int. J. Quantum Subsection b, pp. 148-150, and Appendix B, p. fi6ghould
Chem., Quantum Biol. Symh, 137(1978. be noticed that there is a misprint in the third line of their Eq.

[29] S. Mascarenhas, irElectrets edited by G. M. Sessler, (B1) which must end ik~ ].

(Springer, Berlin, 198)7 pp. 321-346. [52] S. Kullback, Information Theory and StatisticdViley, New

[30] N. F. Mott, Metal-Insulator TransitiongTaylor and Francis, York, 1959.

London, 1990. [53] P. Glansdorff and 1. PrigogineThermodynamic Theory of

[31] J. M. Ziman, Electrons and PhonongClarendon, Oxford, Structure, Stability, and Fluctuatior{8Viley-Interscience, New
1960. York, 1971).

041914-11



